INTERMEDIATES IN THE PALLADIUM-CATALYSED REACTIONS OF 1,3DIENES

IV *. THE REACTIONS OF $\boldsymbol{\eta}^{1}, \boldsymbol{\eta}^{3}$-OCTADIENEDIYL-PALLADIUM COMPLEXES WITH ALKYNES AND ACTIVATED ALKENES

R. BENN, G. GABOR, P.W. JOLLY*, R. MYNOTT and B. RASPEL ** Max-Planck-Institut für Kohlenforschung, D-4330 Mülheim a. d. Ruhr (F.R.G.)
(Received June 6th, 1985)

Summary

The reactions of $\left[\operatorname{Pd}\left(\mathrm{PR}_{3}\right)\left(\eta^{1}, \eta^{3}-\mathrm{C}_{8} \mathrm{H}_{12}\right)\right]$ complexes with the dimethyl ester of acetylene dicarboxylic acid involves an unusual 1,3-addition of the alkyne to an allyl fragment to give cyclopentene-substituted η^{3}-allylpalladium complexes. p-Benzoquinone and 5 -hydroxynaphthoquinone react similarly.

Introduction

Ten years ago its was reported that palladium-bonded p-benzoquinone undergoes a stoichiometric reaction with butadiene to give a complex containing the tricyclic system 1 (eq. 1). [2]. We report here results which suggest that this unusual reaction proceeds by attack of the quinone on an η^{1}, η^{3}-octadienediylpalladium species.

Results

This work originated in investigations of the role played by $\eta^{1}-\eta^{3}$-octadienediyl-palladium-ligand complexes (2) in the palladium catalysed transformations of 1.3 -dienes [1]. The extension to reactions with alkynes was expected to lead to complexes

[^0]similar to 3 as the result of insertion into the $\mathrm{Pd}-\eta$-allyl bond (eq. 2), related behaviour having previously heen ohserved in the reacton of [NirPPh: Kn.y ${ }^{3}$ $\left.\left.\mathrm{C}_{8} \mathrm{H}_{2}\right)\right]$ with alkynes $[\hat{3}]$.

Complex $2\left(\mathrm{R}=\mathrm{Me}, \mathrm{NMe}_{2}, \mathrm{Ph}\right)$ reacts readily with the dimethyl ester of acetylenedicarboxylic acid at $-30^{\circ} \mathrm{C}$ to give pale yellow compounds stable at room temperature. The absence of signals in the olefinic region of the 'II NMR spectrom rules out structures related to 3 , and this and the ${ }^{18}$ C NMR spectrom indicate that an unusual 1.3 -addition of the alkyne to an allyl fragment has occurred. to give 4. Confirmation of the structure comes from the further reaction of $4(\mathrm{R}=$ Me) with HCl (or DCl), from which the evolopentene derivative 5 could be isolated (eq, i).

(4.

No complexes could be isolated from reactions with other alkynes: alkyl-substituted alkynes failed to react below the decomposition point of 2. and a multi-somponent mixture, which was not investigated further was ohtained from the reaction with phenylacetylene.

Related complexes (6.7) were obtained by treating $2\left(\mathrm{R}=\mathrm{NM} \mathrm{e}_{2}\right)$ with 5 -hydroxynaphthoquinone and $2(\mathrm{R}=\mathrm{Me})$ with p-benzoquinone, Clearly reductive coupling of the Pd-bonded organic moiety in 7 will lead to 1 . suggesting the

(6)

Experimental

$\left[\mathrm{Pd}\left(\mathrm{PMe}_{3}\right)\left(\eta^{\prime}-\mathrm{CHCH}_{2} \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{C} H\left(\mathrm{CH}_{2}\right)_{2}-\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{4}\right)\right] \quad(4, \mathrm{R}=\mathrm{Me})$
Acetylenedicarboxylic acid dimethyl ester ($0.5 \mathrm{ml}, 4.07 \mathrm{mmol}$) was added to a solution of $2(\mathrm{R}=\mathrm{Me})(0.76 \mathrm{~g}, 2.57 \mathrm{mmol})[4]$ in THF $(30 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$. The yellow solution became orange and was stirred at $-30^{\circ} \mathrm{C}$ for 3 h then cooled to $-78^{\circ} \mathrm{C}$, and the resultant white precipitate was filtered off, washed with cold pentane, and dried at $0^{\circ} \mathrm{C}$ under high vacuum. Yield $0.74 \mathrm{~g}(81 \%$ theory $)$.

Found: C, 47.05; H, 6.19; P, 7.13; Pd, 24.35. $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{PPd}$ (432.8) calcd.: C, 47.18; H, 6.29; P, 7.16; Pd, 24.59\%. IR (KBr): $\nu_{\text {illvil }} 1511, \nu(\mathrm{C}=\mathrm{C}) 1630, \nu(\mathrm{C}=\mathrm{O})$ $1702,1729 \mathrm{~cm}^{-1} .{ }^{31} \mathrm{P}$ NMR (32.4 MHz, THF- $d_{8},-30^{\circ} \mathrm{C}$): $\delta-18.3 \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}\right.$, toluene $\left.-d_{8},-30^{\circ} \mathrm{C}\right)(\mathbf{a}): \delta(\mathrm{C}-1), 55.81, \delta(\mathrm{C}-2) 118.13(J(\mathrm{P}, \mathrm{C}) 2.0)$, $\delta(\mathrm{C}-3) 77.06(J(\mathrm{P}, \mathrm{C}) 30.5), \delta(\mathrm{C}-4) 29.84, \delta(\mathrm{C}-5) 37.51, \delta(\mathrm{C}-6) 51.28, \delta(\mathrm{C}-7) 32.06$ $(J(\mathrm{P}, \mathrm{C}) 10.2), \delta(\mathrm{C}-8) 41.01, \delta(\mathrm{C}-9) 139.46, \delta(\mathrm{C}-10) 151.16, \delta(\mathrm{C}-11 / 13) 168.02$, $167.02, \delta(\mathrm{C}-12 / 14) 51.44,51.28, \delta(\mathrm{C}-15) 17.01 \mathrm{ppm}(J(\mathrm{P}, \mathrm{C}) 23.4 \mathrm{~Hz}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MILz}\right.$, toluene- $\left.d_{8},-30^{\circ} \mathrm{C}\right)$ (b) $\delta(\mathrm{H}-1) 4.74\left(\mathrm{~m}, J_{1.2} 7.5, J_{1.4} 13.1, J_{1.5} 11.7\right)$, $\delta(\mathrm{H}-2) 3.23(\mathrm{~d}), \delta(\mathrm{H}-4) 2.40(\mathrm{~d}), \delta(\mathrm{H}-5) 2.68(\mathrm{~m}), \delta(\mathrm{H}-6) 1.55(\mathrm{~m}), \delta(\mathrm{H}-7) 1.37(\mathrm{~m})$, $\delta(\mathrm{H}-8) 2.91(\mathrm{~m}), \delta(\mathrm{H}-9) 2.41\left(\mathrm{~m}, J_{9,11} 2.2\right) . \delta(\mathrm{H}-10) 2.41(\mathrm{~m}), \delta(\mathrm{H}-11) 3.10\left(\mathrm{~m}, J_{11.12}\right.$ $\left.-6.8, J_{11.13} 12.1, J_{11 . \mathrm{P}}-0.8\right), \delta(\mathrm{H}-12) 2.91\left(\mathrm{~m}, J_{12.13} 7.7\right), \delta(\mathrm{H}-13) 2.41(\mathrm{~m})$, $\delta(\mathrm{H}-14) 0.78\left(\mathrm{~d}, J_{14 . \mathrm{P}} 8.0 \mathrm{~Hz}\right), \delta(\mathrm{H}-15 / 16) 3.44,3.55 \mathrm{ppm}$.

(a)

(b)
 NMe_{2})

Complex 4 ($\mathrm{R}=\mathrm{NMe}_{2}$) was prepared similarly as a yellow solid from $2(\mathrm{R}=$ NMe_{2}) [4] in 55\% yield.

Found: C, 46.32; H, 6.97; N, 7.98; P, 5.79; Pd, 20.35. $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{PPd}$ (519.9) calcd.: C, 46.21; H, 6.98; N, 8.08; P, 5.96; Pd, 20.47\%. ${ }^{31} \mathrm{P}$ NMR (32.4 MHz, THF- d_{8}),$-30^{\circ} \mathrm{C}$): $\delta 132.7 \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (75.5 MHz , toluene- $d_{8},-10^{\circ} \mathrm{C}$) (a): $\delta((\mathrm{C}-1) 56.45, \delta(\mathrm{C}-2) 118.56(J(\mathrm{P}, \mathrm{C}) 4.1), \delta(\mathrm{C}-3) 79.33(J(\mathrm{P}, \mathrm{C}) 38.7), \delta(\mathrm{C}-4) 23.40$, $\delta(\mathrm{C}-5) 40.73, \delta(\mathrm{C}-6) 49.84, \delta(\mathrm{C}-7) 30.57(J(\mathrm{P}, \mathrm{C}) 11.2), \delta(\mathrm{C}-8) 44.41, \delta(\mathrm{C}-9) 140.69$, $\delta(\mathrm{C}-10) 148.27, \delta(\mathrm{C}-11 / 13) 167.74,166.61, \delta(\mathrm{C}-12 / 14) 51.31,51.15, \delta(\mathrm{C}-15) 38.09$ ppm ($J(\mathrm{P}, \mathbf{C}) 10.2 \mathrm{~Hz}$). ${ }^{1} \mathrm{H}$ NMR (80 MHz , toluene- $d_{8},-30^{\circ} \mathrm{C}$) (b): $\delta(\mathrm{H}-1) 4.60$ (m, $\left.J_{1.2} 7.6, J_{1.4} 13.4, J_{1.5} 12.0\right), \delta(\mathrm{H}-2) 3.72(\mathrm{~d}), \delta(\mathrm{H}-4) 2.32(\mathrm{~d}) . \delta(\mathrm{H}-5) 2.88(\mathrm{~m}$, $\left.J_{5 . \mathrm{P}} 10.8\right), \delta(\mathrm{H}-12) 3.15(\mathrm{~m}), \delta(\mathrm{H}-13) 3.02\left(\mathrm{~m}, J_{13 . \mathrm{P}} 13.8 \mathrm{~Hz}\right), \delta(\mathrm{H}-14) 2.30$, $\delta(\mathrm{H}-15 / 16) 3.55,3.46 \mathrm{ppm}$.
$\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)\left(\eta^{\prime}-\mathrm{CHCH}_{2} \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}-\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{4}\right)\right] \quad(4, \mathrm{R}=\mathrm{Ph})$
Complex $4(\mathrm{R}=\mathrm{Ph})$ was prepared similarly as a yellow solid from $2(\mathrm{R}=\mathrm{Ph})[4]$ in 55% yield.

Found: C. 61.89: H. 5.41: P. 4.88: Pd. 17.36. $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{4} \mathrm{PPd}$ (618.9) caled.: C 62.09: H. 5.37: P. 5.00 ; Pd. 17.19\%. ${ }^{31}$ P NMR 32.4 MHz wluene-d. $30^{\circ} \mathrm{C}$): d $32.3 \mathrm{ppm} .{ }^{1} \mathrm{H}$ NMR (80 MHz . wluene- $d_{\mathrm{c}},-30^{\circ} \mathrm{C}$) (b): $\delta(\mathrm{H}-1) 4.84(\mathrm{~m}) . \delta(\mathrm{H}-2)$ 3.62 (m). $\delta(\mathrm{H}-4) 2.42$ (m). $\delta(\mathrm{H}-15 / 16) 3.44,3.35 \mathrm{ppm}$.

Complex $2\left(\mathrm{R}=\mathrm{NME}_{2}\right)(0.658 \mathrm{~g} .1 .74 \mathrm{mmol})$ and 5 -hydroxymphthoquinone $(0.304 \mathrm{~g}, 1.74 \mathrm{mmol})$ were disolved in THF (30 ml) at $-40^{\circ} \mathrm{C}$. The red solution was stirred for 4 h at $-20^{\circ} \mathrm{C}$. concentrated and treated with cold pentane (10 ml). The orange precipitate was filtered off. washed with pentane and dried at - 30 (under high vacuum. Yield 0.4 g (42 F theory).

Found: C. 52.2: H. 6.4: N. 8.1: P. 5.7: Pd, 19.3. $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{8} \mathrm{O}$ PPd (551.6) calcd.: C. 52.2; H, 6.5: N. 7.6: P. 5.6: Pd, 19.36. IR (KBr): 1 (C=O) 1640. 1680. wa 1515 $\mathrm{cm}{ }^{3} \mathrm{P}$ NMR ($32.4 \mathrm{MH}, ~ T H F-d_{.}-30^{\circ} \mathrm{C}$): $\delta 129.9$ ppon. H NMR 200 MHz . THF-d. $\left.-30^{\circ} \mathrm{C}\right)(\mathrm{c}): 8(\mathrm{H}-1) 4.86\left(\mathrm{~m}, J_{1.2} 7.6, J_{14}-13.6, J_{2}-11.4\right) .8(\mathrm{H}-2) 3.64$ (d) $\delta(\mathrm{H}-7) 7.18 . \delta(\mathrm{H}-8) 7.67, \delta(\mathrm{H}-9) 7.49 . \delta(\mathrm{H}-10) 2.41\left(I_{16}, 9.7\right) .8(\mathrm{H}-15) 3.14 \mathrm{~m}$.

Complex $2(\mathrm{R}=\mathrm{Me})(0.67 \mathrm{~g} .2 .3 \mathrm{mmol})$ and ρ-benzoquinone (0.25 g .2 .3 mmol were dissolved in ether (30 mb) at $-40^{\circ} \mathrm{C}$, and the solution was stimed for 5 h . The yellow precipitate was filtered off, washed with cold pentane and dried under high vacuum. Yield 0.42 g (433° theorv).

(c)

(d)

Found: C. 51.4: H. 6.3: P. 7.9: Pd. 26.5. $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{PPd}$ (398.5) calcd.: C. 51.2: H. 6.3: P. 7.8: $\mathrm{Pd}, 26.7^{\circ} \mathrm{C}$. IR (KBr$): \nu(\mathrm{C}=\mathrm{C}) 1610, \nu(\mathrm{C}=0) 1604.1670 \mathrm{~cm}$, P NMR (32.4 MHz, toluene- $\left.d_{8} .-30^{\circ} \mathrm{C}\right): \delta-19.5 \mathrm{ppm} .{ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}$, whene-ds. $\left.-30^{\circ} \mathrm{C}\right)(\mathrm{d}): \delta(\mathrm{H}-1) 4.75 . \delta(\mathrm{H}-2) 3.21 . \delta(\mathrm{H}-9) 6.25 . \delta(\mathrm{H}-10) 0.81 . \delta(\mathrm{H}-15) 2.65$. $\delta(\mathrm{H}-16) 2.98 \mathrm{ppm}$.

Reaction of $4(R=$ Me) with $D C l$
A solution of $4(\mathrm{R}=\mathrm{Me})(0.33 \mathrm{~g})$ in ether $(10 \mathrm{ml})$ was teated with 0.2 ml of a 37 F solution of DCl in $\mathrm{D}_{2} \mathrm{O}$ then stirred for 4 h at room temperature. The orange precipitate was filtered off and the pale-yellow filtrate was distilled to remone excess DCl and solvent, and the presence of 5 confirmed by NMR spectroscopy Analogous results were obtained from the reaction of $4(\mathrm{R}=\mathrm{Me})$ with HCl .
${ }^{1} \mathrm{H}$ NMR (400 MHz , whene- d_{s}) (e): $8(\mathrm{H}-1) 5.67$ (m, $J_{1.2}$ 10.2. $J_{1.2}$ 17.1. $J_{1.4}$ $6.6), \delta(\mathrm{H}-2) 4.92\left(\mathrm{~m} . J_{2}, 2.1, J_{24}-1,3\right) . \delta(\mathrm{H}-3) 4.95\left(\mathrm{~m}, J_{3}-1.6\right), \delta(\mathrm{H}-4) 1.86$
 $\left.J_{121}: 9.2 \mathrm{~Hz}\right) . \delta(\mathrm{H}-13) 1.74(\mathrm{~m}) . \delta(\mathrm{H}-15) 3.50(\mathrm{~s}) .8(\mathrm{H}-16) 3.60(\mathrm{~s}) \mathrm{ppm}{ }^{\circ} \mathrm{C}$ VMR
(75.5 MHz , toluene- d_{8}) (f): $\delta(\mathrm{C}-1) 114.8, \delta(\mathrm{C}-2) 139.3, \delta(\mathrm{C}-3) 34.2$ (J_{CD} 18.8), $\delta(\mathrm{C}-4) 27.2, \delta(\mathrm{C}-5) 33.5, \delta(\mathrm{C}-6) 48.6, \delta(\mathrm{C}-7) 146.4, \delta(\mathrm{C}-8) 137.7, \delta(\mathrm{C}-9) 33.1$, $\delta(\mathrm{C}-10) 29.1\left(J_{\mathrm{C}, \mathrm{D}} 19.9\right), \delta(\mathrm{C}-11 / 12) 166.7,165.4, \delta(\mathrm{C}-13 / 14) 51.63,51.60 \mathrm{ppm}$.

(e)

(4)

References

1 For Part III see P.W. Jolly, R. Mynott, B. Raspel and K.-P. Schick, Organometallics, in press.
2 H. Minematsu, S. Takahashi and N. Hagihara, Chem. Commun., (1975) 466.
3 B. Büssemeier, P.W. Jolly and G. Wilke, J. Am. Chem. Soc., 96 (1974) 4726.
4 R. Benn, P.W. Jolly, R. Mynott, B. Raspel, G. Schenker, K.-P. Schick and G. Schroth, Organometallics. in press.

[^0]: * For part III see ref. 1.
 ** Part of the doctoral thesis, Rulir-Universität Bochum (1984).

